Tuesday, July 3, 2012

MIRAPEXIN 2.1 mg prolonged-release tablets





1. Name Of The Medicinal Product



MIRAPEXIN 2.1 mg prolonged-release tablets


2. Qualitative And Quantitative Composition



Each prolonged-release tablet contains 3 mg pramipexole dihydrochloride monohydrate equivalent to 2.1 mg pramipexole.



Please note:



Pramipexole doses as published in the literature refer to the salt form.



Therefore, doses will be expressed in terms of both pramipexole base and pramipexole salt (in brackets).



For a full list of excipients, see section 6.1.



3. Pharmaceutical Form



Prolonged-release tablet.



The tablets are white to off-white, of oval shape, and have a code embossed (one side with the code P4, and one side with the Boehringer Ingelheim company symbol).



4. Clinical Particulars



4.1 Therapeutic Indications



MIRAPEXIN is indicated in adults for treatment of the signs and symptoms of idiopathic Parkinson's disease, alone (without levodopa) or in combination with levodopa, i.e. over the course of the disease, through to late stages when the effect of levodopa wears off or becomes inconsistent and fluctuations of the therapeutic effect occur (end of dose or “on off” fluctuations).



4.2 Posology And Method Of Administration



Posology



MIRAPEXIN prolonged-release tablets are a once-a-day oral formulation of pramipexole.



Initial treatment



Doses should be increased gradually from a starting dose of 0.26 mg of base (0.375 mg of salt) per day and then increased every 5 - 7 days. Providing patients do not experience intolerable undesirable effects, the dose should be titrated to achieve a maximal therapeutic effect.



















Ascending dose schedule of MIRAPEXIN prolonged-release tablets


  


Week




Daily dose (mg of base)




Daily dose (mg of salt)




1




0.26




0.375




2




0.52




0.75




3




1.05




1.5



If a further dose increase is necessary the daily dose should be increased by 0.52 mg of base (0.75 mg of salt) at weekly intervals up to a maximum dose of 3.15 mg of base (4.5 mg of salt) per day. However, it should be noted that the incidence of somnolence is increased at doses higher than 1.05 mg of base (1.5 mg of salt) per day (see section 4.8).



Patients already taking MIRAPEXIN tablets may be switched to MIRAPEXIN prolonged-release tablets overnight, at the same daily dose. After switching to MIRAPEXIN prolonged-release tablets, the dose may be adjusted depending on the patient's therapeutic response (see section 5.1).



Maintenance treatment



The individual dose of pramipexole should be in the range of 0.26 mg of base (0.375 mg of salt) to a maximum of 3.15 mg of base (4.5 mg of salt) per day. During dose escalation in pivotal studies, efficacy was observed starting at a daily dose of 1.05 mg of base (1.5 mg of salt). Further dose adjustments should be done based on the clinical response and the occurrence of adverse reactions. In clinical trials approximately 5% of patients were treated at doses below 1.05 mg of base (1.5 mg of salt). In advanced Parkinson's disease, pramipexole doses higher than 1.05 mg of base (1.5 mg of salt) per day can be useful in patients where a reduction of the levodopa therapy is intended. It is recommended that the dose of levodopa is reduced during both the dose escalation and the maintenance treatment with MIRAPEXIN, depending on reactions in individual patients (see section 4.5).



Missed dose



When the intake of a dose is missed, MIRAPEXIN prolonged-release tablets should be taken within 12 hours after the regularly scheduled time. After 12 hours, the missed dose should be left out and the next dose should be taken on the following day at the next regularly scheduled time.



Treatment discontinuation



Abrupt discontinuation of dopaminergic therapy can lead to the development of a neuroleptic malignant syndrome. Pramipexole should be tapered off at a rate of 0.52 mg of base (0.75 mg of salt) per day until the daily dose has been reduced to 0.52 mg of base (0.75 mg of salt). Thereafter the dose should be reduced by 0.26 mg of base (0.375 mg of salt) per day (see section 4.4).



Dosing in patients with renal impairment



The elimination of pramipexole is dependent on renal function. The following dose schedule is suggested:



Patients with a creatinine clearance above 50 ml/min require no reduction in daily dose or dosing frequency.



In patients with a creatinine clearance between 30 and 50 ml/min, treatment should be started with 0.26 mg MIRAPEXIN prolonged-release tablets every other day. Caution should be exercised and careful assessment of therapeutic response and tolerability should be made before increasing to daily dosing after one week. If a further dose increase is necessary, doses should be increased by 0.26 mg pramipexole base at weekly intervals up to a maximum dose of 1.57 mg pramipexole base (2.25 mg of salt) per day.



The treatment of patients with a creatinine clearance below 30 ml/min with MIRAPEXIN prolonged-release tablets is not recommended as no data are available for this patient population. The use of MIRAPEXIN tablets should be considered.



If renal function declines during maintenance therapy, the recommendations given above should be followed.



Dosing in patients with hepatic impairment



Dose adjustment in patients with hepatic failure is probably not necessary, as approx. 90% of absorbed active substance is excreted through the kidneys. However, the potential influence of hepatic insufficiency on MIRAPEXIN pharmacokinetics has not been investigated.



Paediatric population



The safety and efficacy of MIRAPEXIN in children below 18 years has not been established. There is no relevant use of MIRAPEXIN prolonged-release tablets in the paediatric population in Parkinson's Disease.



Method of administration



The tablets should be swallowed whole with water, and must not be chewed, divided or crushed. The tablets may be taken either with or without food and should be taken each day at about the same time.



4.3 Contraindications



Hypersensitivity to the active substance or to any of the excipients.



4.4 Special Warnings And Precautions For Use



When prescribing MIRAPEXIN in a patient with Parkinson's disease with renal impairment a reduced dose is suggested in line with section 4.2.



Hallucinations



Hallucinations are known as a side effect of treatment with dopamine agonists and levodopa. Patients should be informed that (mostly visual) hallucinations can occur.



Dyskinesia



In advanced Parkinson's disease, in combination treatment with levodopa, dyskinesia can occur during the initial titration of MIRAPEXIN. If they occur, the dose of levodopa should be decreased.



Sudden onset of sleep and somnolence



Pramipexole has been associated with somnolence and episodes of sudden sleep onset, particularly in patients with Parkinson's disease. Sudden onset of sleep during daily activities, in some cases without awareness or warning signs, has been reported uncommonly. Patients must be informed of this and advised to exercise caution while driving or operating machines during treatment with MIRAPEXIN. Patients who have experienced somnolence and/or an episode of sudden sleep onset must refrain from driving or operating machines. Furthermore a reduction of the dose or termination of therapy may be considered. Because of possible additive effects, caution should be advised when patients are taking other sedating medicinal products or alcohol in combination with pramipexole (see sections 4.5, 4.7 and section 4.8).



Impulse control disorders and compulsive behaviours



Pathological gambling, increased libido and hypersexuality have been reported in patients treated with dopamine agonists for Parkinson's disease, including MIRAPEXIN. Furthermore, patients and caregivers should be aware of the fact that other behavioural symptoms of impulse control disorders and compulsions such as binge eating and compulsive shopping can occur. Dose reduction/tapered discontinuation should be considered.



Patients with psychotic disorders



Patients with psychotic disorders should only be treated with dopamine agonists if the potential benefits outweigh the risks. Co-administration of antipsychotic medicinal products with pramipexole should be avoided (see section 4.5).



Ophthalmologic monitoring



Ophthalmologic monitoring is recommended at regular intervals or if vision abnormalities occur.



Severe cardiovascular disease



In case of severe cardiovascular disease, care should be taken. It is recommended to monitor blood pressure, especially at the beginning of treatment, due to the general risk of postural hypotension associated with dopaminergic therapy.



Neuroleptic malignant syndrome



Symptoms suggestive of neuroleptic malignant syndrome have been reported with abrupt withdrawal of dopaminergic therapy (see section 4.2).



4.5 Interaction With Other Medicinal Products And Other Forms Of Interaction



Plasma protein binding



Pramipexole is bound to plasma proteins to a very low (< 20%) extent, and little biotransformation is seen in man. Therefore, interactions with other medicinal products affecting plasma protein binding or elimination by biotransformation are unlikely. As anticholinergics are mainly eliminated by biotransformation, the potential for an interaction is limited, although an interaction with anticholinergics has not been investigated. There is no pharmacokinetic interaction with selegiline and levodopa.



Inhibitors/competitors of active renal elimination pathway



Cimetidine reduced the renal clearance of pramipexole by approximately 34%, presumably by inhibition of the cationic secretory transport system of the renal tubules. Therefore, medicinal products that are inhibitors of this active renal elimination pathway or are eliminated by this pathway, such as cimetidine, amantadine, mexiletine, zidovudine, cisplatin, quinine and procainamide, may interact with pramipexole resulting in reduced clearance of pramipexole. Reduction of the pramipexole dose should be considered when these medicinal products are administered concomitantly with MIRAPEXIN.



Combination with levodopa



When MIRAPEXIN is given in combination with levodopa, it is recommended that the dose of levodopa is reduced and the dose of other anti-parkinsonian medicinal products is kept constant while increasing the dose of MIRAPEXIN.



Because of possible additive effects, caution should be advised when patients are taking other sedating medicinal products or alcohol in combination with pramipexole (see sections 4.4, 4.7 and 4.8).



Antipsychotic medicinal products



Co-administration of antipsychotic medicinal products with pramipexole should be avoided (see section 4.4), e.g. if antagonistic effects can be expected.



4.6 Pregnancy And Lactation



Pregnancy



The effect on pregnancy and lactation has not been investigated in humans. Pramipexole was not teratogenic in rats and rabbits, but was embryotoxic in the rat at maternotoxic doses (see section 5.3). MIRAPEXIN should not be used during pregnancy unless clearly necessary, i.e. if the potential benefit justifies the potential risk to the foetus.



Breast-feeding



As pramipexole treatment inhibits secretion of prolactin in humans, inhibition of lactation is expected. The excretion of pramipexole into breast milk has not been studied in women. In rats, the concentration of active substance-related radioactivity was higher in breast milk than in plasma.



In the absence of human data, MIRAPEXIN should not be used during breast-feeding. However, if its use is unavoidable, breast-feeding should be discontinued.



Fertility



No studies on the effect on human fertility have been conducted. In animal studies, pramipexole affected oestrous cycles and reduced female fertility as expected for a dopamine agonist. However, these studies did not indicate direct or indirect harmful effects with respect to male fertility.



4.7 Effects On Ability To Drive And Use Machines



MIRAPEXIN can have a major influence on the ability to drive and use machines.



Hallucinations or somnolence can occur.



Patients being treated with MIRAPEXIN and presenting with somnolence and/or sudden sleep episodes must be informed to refrain from driving or engaging in activities where impaired alertness may put themselves or others at risk of serious injury or death (e.g. operating machines) until such recurrent episodes and somnolence have resolved (see also sections 4.4, 4.5 and 4.8).



4.8 Undesirable Effects



Expected adverse reactions



The following adverse reactions are expected under the use of MIRAPEXIN: abnormal dreams, amnesia, behavioural symptoms of impulse control disorders and compulsions such as binge eating, compulsive shopping, hypersexuality and pathological gambling; cardiac failure, confusion, constipation, delusion, dizziness, dyskinesia, dyspnoea, fatigue, hallucinations, headache, hiccups, hyperkinesia, hyperphagia, hypotension, insomnia, libido disorders, nausea, paranoia, peripheral oedema, pneumonia, pruritus, rash and other hypersensitivity; restlessness, somnolence, sudden onset of sleep, syncope, visual impairment including diplopia, vision blurred and visual acuity reduced, vomiting, weight decrease including decreased appetite, weight increase.



Based on the analysis of pooled placebo-controlled trials, comprising a total of 1,778 Parkinson's disease patients on pramipexole and 1,297 patients on placebo, adverse drug reactions were frequently reported for both groups. 67% of patients on pramipexole and 54% of patients on placebo reported at least one adverse drug reaction.



The adverse drug reactions reported in the table below are those events that occurred in 0.1% or more of patients treated with pramipexole and were reported significantly more often in patients taking pramipexole than placebo, or where the event was considered clinically relevant. The majority of adverse drug reactions were mild to moderate, they usually start early in therapy and most tended to disappear even as therapy was continued.



Within the system organ classes, adverse reactions are listed under headings of frequency (number of patients expected to experience the reaction), using the following categories: very common (



The most commonly (




























































System Organ Class




Adverse Drug Reaction




Infections and infestations


 


Uncommon




pneumonia




Psychiatric disorders


 


Common




abnormal dreams, behavioural symptoms of impulse control disorders and compulsions; confusion, hallucinations, insomnia




Uncommon




binge eating1, compulsive shopping, delusion, hyperphagia1, hypersexuality, libido disorder, paranoia, pathological gambling, restlessness




Nervous system disorders


 


Very common




dizziness, dyskinesia, somnolence




Common




headache




Uncommon




amnesia, hyperkinesia, sudden onset of sleep, syncope




Eye disorders


 


Common




visual impairment including diplopia, vision blurred and visual acuity reduced




Cardiac disorders


 


Uncommon




cardiac failure1




Vascular disorders


 


Common




hypotension




Respiratory, thoracic, and mediastinal disorders


 


Uncommon




dyspnoea, hiccups




Gastrointestinal disorders


 


Very common




nausea




Common




constipation, vomiting




Skin and subcutaneous tissue disorders


 


Uncommon




hypersensitivity, pruritus, rash




General disorders and administration site conditions


 


Common




fatigue, peripheral oedema




Investigations


 


Common




weight decrease including decreased appetite




Uncommon




weight increase



1This side effect has been observed in post-marketing experience. With 95 % certainty, the frequency category is not greater than uncommon, but might be lower. A precise frequency estimation is not possible as the side effect did not occur in a clinical trial database of 2,762 patients with Parkinson's Disease treated with pramipexole.



Somnolence



Pramipexole is commonly associated with somnolence and has been associated uncommonly with excessive daytime somnolence and sudden sleep onset episodes (see also section 4.4).



Libido disorders



Pramipexole may uncommonly be associated with libido disorders (increased or decreased).



Impulse control disorders and compulsive behaviours



Patients treated with dopamine agonists for Parkinson's disease, including MIRAPEXIN, especially at high doses, have been reported as exhibiting signs of pathological gambling, increased libido and hypersexuality, generally reversible upon reduction of the dose or treatment discontinuation. See also section 4.4.



In a cross-sectional, retrospective screening and case-control study including 3,090 Parkinson's disease patients, 13.6% of all patients receiving dopaminergic or non-dopaminergic treatment had symptoms of an impulse control disorder during the past six months. Manifestations observed include pathological gambling, compulsive shopping, binge eating, and compulsive sexual behaviour (hypersexuality). Possible independent risk factors for impulse control disorders included dopaminergic treatments and higher doses of dopaminergic treatment, younger age (



Cardiac failure



In clinical studies and post-marketing experience cardiac failure has been reported in patients with pramipexole. In a pharmacoepidemiological study pramipexole use was associated with an increased risk of cardiac failure compared with non-use of pramipexole (observed risk ratio 1.86; 95% CI, 1.21-2.85).



4.9 Overdose



There is no clinical experience with massive overdose. The expected adverse reactions would be those related to the pharmacodynamic profile of a dopamine agonist, including nausea, vomiting, hyperkinesia, hallucinations, agitation and hypotension. There is no established antidote for overdose of a dopamine agonist. If signs of central nervous system stimulation are present, a neuroleptic agent may be indicated. Management of the overdose may require general supportive measures, along with gastric lavage, intravenous fluids, administration of activated charcoal and electrocardiogram monitoring.



5. Pharmacological Properties



5.1 Pharmacodynamic Properties



Pharmacotherapeutic group: anti-Parkinson drugs, dopamine agonists, ATC code: N04BC05.



Pramipexole is a dopamine agonist that binds with high selectivity and specificity to the D2 subfamily of dopamine receptors of which it has a preferential affinity to D3 receptors, and has full intrinsic activity.



Pramipexole alleviates parkinsonian motor deficits by stimulation of dopamine receptors in the striatum. Animal studies have shown that pramipexole inhibits dopamine synthesis, release, and turnover.



In human volunteers, a dose-dependent decrease in prolactin was observed. In a clinical trial with healthy volunteers, where MIRAPEXIN prolonged-release tablets were titrated faster (every 3 days) than recommended up to 3.15 mg pramipexole base (4.5 mg of salt) per day, an increase in blood pressure and heart rate was observed. Such effect was not observed in patient studies.



In patients pramipexole alleviates signs and symptoms of idiopathic Parkinson's disease. Placebo-controlled clinical trials included approximately 1,800 patients of Hoehn and Yahr stages I – V treated with pramipexole. Out of these, approximately 1,000 were in more advanced stages, received concomitant levodopa therapy, and suffered from motor complications.



In early and advanced Parkinson's disease, efficacy of pramipexole in controlled clinical trials was maintained for approximately six months. In open continuation trials lasting for more than three years there were no signs of decreasing efficacy.



In a controlled double blind clinical trial of 2 year duration, initial treatment with pramipexole significantly delayed the onset of motor complications, and reduced their occurrence compared to initial treatment with levodopa. This delay in motor complications with pramipexole should be balanced against a greater improvement in motor function with levodopa (as measured by the mean change in UPDRS-score). The overall incidence of hallucinations and somnolence was generally higher in the escalation phase with the pramipexole group. However, there was no significant difference during the maintenance phase. These points should be considered when initiating pramipexole treatment in patients with Parkinson's disease.



The safety and efficacy of MIRAPEXIN prolonged-release tablets in the treatment of Parkinson's disease was evaluated in a multinational drug development program consisting of three randomised, controlled trials. Two trials were conducted in patients with early Parkinson's disease and one trial was conducted in patients with advanced Parkinson's disease.



Superiority of MIRAPEXIN prolonged-release tablets over placebo was demonstrated after 18 weeks of treatment on both the primary (UPDRS Parts II+III score) and the key secondary (CGI-I and PGI-I responder rates) efficacy endpoints in a double-blind placebo-controlled trial including a total of 539 patients with early Parkinson's disease. Maintenance of efficacy was shown in patients treated for 33 weeks. MIRAPEXIN prolonged-release tablets were non-inferior to pramipexole immediate release tablets as assessed on the UPDRS Parts II+III score at week 33.



In a double-blind placebo-controlled trial including a total of 517 patients with advanced Parkinson's disease who were on concomitant levodopa therapy superiority of MIRAPEXIN prolonged-release tablets over placebo was demonstrated after 18 weeks of treatment on both the primary (UPDRS Parts II+III score) and the key secondary (off-time) efficacy endpoints.



The efficacy and tolerability of an overnight switch from MIRAPEXIN tablets to MIRAPEXIN prolonged-release tablets at the same daily dose were evaluated in a double-blind clinical study in patients with early Parkinson's disease.



Efficacy was maintained in 87 of 103 patients switched to MIRAPEXIN prolonged-release tablets. Out of these 87 patients, 82.8% did not change their dose, 13.8% increased and 3.4% decreased their dose.



In half of the 16 patients who did not meet the criterion for maintained efficacy on UPDRS Part II+III score, the change from baseline was considered not clinically relevant.



Only one patient switched to MIRAPEXIN prolonged-release tablets experienced a drug-related adverse event leading to withdrawal.



The European Medicines Agency has waived the obligation to submit the results of studies with MIRAPEXIN in all subsets of the paediatric population in Parkinson's Disease (see section 4.2 for information on paediatric use).



5.2 Pharmacokinetic Properties



Pramipexole is completely absorbed following oral administration. The absolute bioavailability is greater than 90%.



In a Phase I trial, where pramipexole immediate release and prolonged-release tablets were assessed in fasted state, the minimum and peak plasma concentration (Cmin, Cmax) and exposure (AUC) of the same daily dose of MIRAPEXIN prolonged-release tablets given once daily and MIRAPEXIN tablets given three times a day were equivalent.



The once daily administration of MIRAPEXIN prolonged-release tablets causes less frequent fluctuations in the pramipexole plasma concentration over 24 hours compared to the three times daily administration of pramipexole immediate release tablets.



The maximum plasma concentrations occur at about 6 hours after administration of MIRAPEXIN prolonged-release tablets once daily. Steady state of exposure is reached at the latest after 5 days of continuous dosing.



Concomitant administration with food does generally not affect the bioavailability of pramipexole. Intake of a high fat meal induced an increase in peak concentration (Cmax) of about 24% after a single dose administration and about 20% after multiple dose administrations and a delay of about 2 hours in time to reach peak concentration in healthy volunteers. Total exposure (AUC) was not affected by concomitant food intake. The increase in Cmax is not considered clinically relevant. In the Phase III studies that established safety and efficacy of MIRAPEXIN prolonged-release tablets, patients were instructed to take study medication without regard to food intake.



While body weight has no impact on the AUC, it was found to influence the volume of distribution and therefore the peak concentrations Cmax. A decreased body weight by 30 kg results in an increase in Cmax of 45%. However, in Phase III trials in Parkinson's disease patients no clinically meaningful influence of body weight on the therapeutic effect and tolerability of MIRAPEXIN prolonged-release tablets was detected.



Pramipexole shows linear kinetics and a small inter-patient variation of plasma levels. In humans, the protein binding of pramipexole is very low (< 20%) and the volume of distribution is large (400 l). High brain tissue concentrations were observed in the rat (approx. 8-fold compared to plasma).



Pramipexole is metabolised in man only to a small extent.



Renal excretion of unchanged pramipexole is the major route of elimination. Approximately 90% of 14C-labelled dose is excreted through the kidneys while less than 2% is found in the faeces. The total clearance of pramipexole is approximately 500 ml/min and the renal clearance is approximately 400 ml/min. The elimination half-life (t½) varies from 8 hours in the young to 12 hours in the elderly.



5.3 Preclinical Safety Data



Repeated dose toxicity studies showed that pramipexole exerted functional effects, mainly involving the CNS and female reproductive system, and probably resulting from an exaggerated pharmacodynamic effect of pramipexole.



Decreases in diastolic and systolic pressure and heart rate were noted in the minipig, and a tendency to a hypotensive effect was discerned in the monkey.



The potential effects of pramipexole on reproductive function have been investigated in rats and rabbits. Pramipexole was not teratogenic in rats and rabbits but was embryotoxic in the rat at maternally toxic doses. Due to the selection of animal species and the limited parameters investigated, the adverse effects of pramipexole on pregnancy and male fertility have not been fully elucidated.



A delay in sexual development (i.e., preputial separation and vaginal opening) was observed in rats. The relevance for humans is unknown.



Pramipexole was not genotoxic. In a carcinogenicity study, male rats developed Leydig cell hyperplasia and adenomas, explained by the prolactin-inhibiting effect of pramipexole. This finding is not clinically relevant to man. The same study also showed that, at doses of 2 mg/kg (of salt) and higher, pramipexole was associated with retinal degeneration in albino rats. The latter finding was not observed in pigmented rats, nor in a 2-year albino mouse carcinogenicity study or in any other species investigated.



6. Pharmaceutical Particulars



6.1 List Of Excipients



Hypromellose 2208



Maize starch



Carbomer 941



Colloidal anhydrous silica



Magnesium stearate



6.2 Incompatibilities



Not applicable.



6.3 Shelf Life



3 years



6.4 Special Precautions For Storage



Store in the original package in order to protect from moisture.



This medicinal product does not require any special temperature storage conditions.



6.5 Nature And Contents Of Container



OPA/aluminium/PVC-aluminium blisters.



Each blister strip contains 10 prolonged-release tablets.



Cartons containing 1, 3 or 10 blister strips (10, 30 or 100 prolonged-release tablets).



Not all pack sizes may be marketed.



6.6 Special Precautions For Disposal And Other Handling



No special requirements.



7. Marketing Authorisation Holder



Boehringer Ingelheim International GmbH



Binger Strasse 173



D-55216 Ingelheim am Rhein



Germany



8. Marketing Authorisation Number(S)



EU/1/97/051/022-024



9. Date Of First Authorisation/Renewal Of The Authorisation



Date of first authorisation: 23 February 1998



Date of latest renewal: 23 February 2008



10. Date Of Revision Of The Text



17 June 2011



Detailed information on this product is available on the website of the European Medicines Agency http://www.ema.europa.eu.




Monday, July 2, 2012

sermorelin Injection


ser-moe-REL-in


Commonly used brand name(s)

In the U.S.


  • Geref

  • Geref Diagnostic

Available Dosage Forms:


  • Powder for Solution

Therapeutic Class: Endocrine-Metabolic Agent


Pharmacologic Class: Growth Hormone Releasing Hormone Analog


Uses For sermorelin


Sermorelin is a synthetic (man-made) version of a naturally occurring substance that causes release of growth hormone from the pituitary gland. Growth hormone is naturally produced by the pituitary gland and is necessary for growth in children. In children who fail to grow normally because their bodies are not producing enough growth hormone, sermorelin may be used to increase the amount of growth hormone produced by the pituitary gland.


sermorelin is available only with your doctor's prescription.


Before Using sermorelin


In deciding to use a medicine, the risks of taking the medicine must be weighed against the good it will do. This is a decision you and your doctor will make. For sermorelin, the following should be considered:


Allergies


Tell your doctor if you have ever had any unusual or allergic reaction to sermorelin or any other medicines. Also tell your health care professional if you have any other types of allergies, such as to foods, dyes, preservatives, or animals. For non-prescription products, read the label or package ingredients carefully.


Pregnancy








Pregnancy CategoryExplanation
All TrimestersCAnimal studies have shown an adverse effect and there are no adequate studies in pregnant women OR no animal studies have been conducted and there are no adequate studies in pregnant women.

Breast Feeding


There are no adequate studies in women for determining infant risk when using this medication during breastfeeding. Weigh the potential benefits against the potential risks before taking this medication while breastfeeding.


Interactions with Medicines


Although certain medicines should not be used together at all, in other cases two different medicines may be used together even if an interaction might occur. In these cases, your doctor may want to change the dose, or other precautions may be necessary. Tell your healthcare professional if you are taking any other prescription or nonprescription (over-the-counter [OTC]) medicine.


Interactions with Food/Tobacco/Alcohol


Certain medicines should not be used at or around the time of eating food or eating certain types of food since interactions may occur. Using alcohol or tobacco with certain medicines may also cause interactions to occur. Discuss with your healthcare professional the use of your medicine with food, alcohol, or tobacco.


Other Medical Problems


The presence of other medical problems may affect the use of sermorelin. Make sure you tell your doctor if you have any other medical problems, especially:


  • Underactive thyroid—This condition can interfere with the effects of sermorelin

Proper Use of sermorelin


If you are injecting sermorelin yourself, use it exactly as directed by your doctor. Do not use more or less of it, and do not use it more often than your doctor ordered. The exact amount of medicine needed has been carefully worked out. Using too much will increase the risk of side effects, while using too little may not improve the condition.


Each package of sermorelin contains a patient instruction sheet. Read this sheet carefully and make sure you understand:


  • How to prepare the injection.

  • Proper use of disposable syringes and needles, including safe handling and disposal.

  • How to give the injection.

  • How long the injection is safe to use.

It is best to use a different place on the body for each injection (for example, abdomen, hip, thigh, or upper arm). To help you remember to do this, you may want to keep a record of the date and location for each injection.


Dosing


The dose of sermorelin will be different for different patients. Follow your doctor's orders or the directions on the label. The following information includes only the average doses of sermorelin. If your dose is different, do not change it unless your doctor tells you to do so.


The amount of medicine that you take depends on the strength of the medicine. Also, the number of doses you take each day, the time allowed between doses, and the length of time you take the medicine depend on the medical problem for which you are using the medicine.


Storage


Store in the refrigerator. Do not freeze.


Keep out of the reach of children.


Do not keep outdated medicine or medicine no longer needed.


Precautions While Using sermorelin


It is very important that your doctor check your progress at regular visits.


sermorelin Side Effects


Along with its needed effects, a medicine may cause some unwanted effects. Although not all of these side effects may occur, if they do occur they may need medical attention.


Check with your doctor as soon as possible if any of the following side effects occur:


More common
  • Pain, redness, or swelling at the place of injection

Rare
  • Itching

  • trouble in swallowing

Some side effects may occur that usually do not need medical attention. These side effects may go away during treatment as your body adjusts to the medicine. Also, your health care professional may be able to tell you about ways to prevent or reduce some of these side effects. Check with your health care professional if any of the following side effects continue or are bothersome or if you have any questions about them:


Rare
  • Dizziness

  • flushing

  • headache

  • sleepiness

  • trouble sitting still

Other side effects not listed may also occur in some patients. If you notice any other effects, check with your healthcare professional.


Call your doctor for medical advice about side effects. You may report side effects to the FDA at 1-800-FDA-1088.

See also: sermorelin Injection side effects (in more detail)



The information contained in the Thomson Reuters Micromedex products as delivered by Drugs.com is intended as an educational aid only. It is not intended as medical advice for individual conditions or treatment. It is not a substitute for a medical exam, nor does it replace the need for services provided by medical professionals. Talk to your doctor, nurse or pharmacist before taking any prescription or over the counter drugs (including any herbal medicines or supplements) or following any treatment or regimen. Only your doctor, nurse, or pharmacist can provide you with advice on what is safe and effective for you.


The use of the Thomson Reuters Healthcare products is at your sole risk. These products are provided "AS IS" and "as available" for use, without warranties of any kind, either express or implied. Thomson Reuters Healthcare and Drugs.com make no representation or warranty as to the accuracy, reliability, timeliness, usefulness or completeness of any of the information contained in the products. Additionally, THOMSON REUTERS HEALTHCARE MAKES NO REPRESENTATION OR WARRANTIES AS TO THE OPINIONS OR OTHER SERVICE OR DATA YOU MAY ACCESS, DOWNLOAD OR USE AS A RESULT OF USE OF THE THOMSON REUTERS HEALTHCARE PRODUCTS. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE ARE HEREBY EXCLUDED. Thomson Reuters Healthcare does not assume any responsibility or risk for your use of the Thomson Reuters Healthcare products.


More sermorelin Injection resources


  • Sermorelin Injection Side Effects (in more detail)
  • Sermorelin Injection Use in Pregnancy & Breastfeeding
  • Sermorelin Injection Support Group
  • 0 Reviews · Be the first to review/rate this drug

Sunday, July 1, 2012

Perphenazine




Perphenazine TABLETS, USP

WARNING

Increased Mortality in Elderly Patients with Dementia-Related Psychosis

Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Analyses of seventeen placebo-controlled trials (modal duration of 10 weeks), largely in patients taking atypical antipsychotic drugs, revealed a risk of death in drug-treated patients of between 1.6 to 1.7 times the risk of death in placebo-treated patients. Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. Observational studies suggest that, similar to atypical antipsychotic drugs, treatment with conventional antipsychotic drugs may increase mortality. The extent to which the findings of increased mortality in observational studies may be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear. Perphenazine is not approved for the treatment of patients with dementia-related psychosis (see WARNINGS).




Perphenazine Description


Perphenazine (4-[3-(2-chlorophenothiazin-10-yl)propyl]-1-piperazineethanol), a piperazinyl phenothiazine, having the chemical formula, C21H26CIN3OS. It is available as oral tablets containing 2 mg, 4 mg, 8 mg, and 16 mg of Perphenazine.


Inactive ingredients: black iron oxide, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polyvinyl alcohol, sodium starch glycolate, talc, titanium dioxide, yellow iron oxide. Its structural formula is:




ACTIONS


Perphenazine has actions at all levels of the central nervous system, particularly the hypothalamus. However, the site and mechanism of action of therapeutic effect are not known.



Perphenazine - Clinical Pharmacology



Pharmacokinetics


Following oral administration of Perphenazine tablets, mean peak plasma Perphenazine concentrations were observed between 1 to 3 hours. The plasma elimination half-life of Perphenazine was independent of dose and ranged between 9 and 12 hours. In a study in which normal volunteers (n=12) received Perphenazine 4 mg q8h for 5 days, steady-state concentrations of Perphenazine were reached within 72 hours. Mean (%CV) Cmax and Cmin values for Perphenazine and 7-hydroxyPerphenazine at steady-state are listed below:












Parameter 



Perphenazine 



7-HydroxyPerphenazine 



Cmax (pg/mL) 



984 (43) 



509 (25) 



Cmin (pg/mL) 



442 (76) 



350 (56) 


Peak 7-hydroxyPerphenazine concentrations were observed between 2 to 4 hours with a terminal phase half-life ranging between 9.9 to 18.8 hours. Perphenazine is extensively metabolized in the liver to a number of metabolites by sulfoxidation, hydroxylation, dealkylation, and glucuronidation. The pharmacokinetics of Perphenazine covary with the hydroxylation of debrisoquine which is mediated by cytochrome P450 2D6 (CYP 2D6) and thus is subject to genetic polymorphism—i.e., 7% to 10% of Caucasians and a low percentage of Asians have little or no activity and are called “poor metabolizers.” Poor metabolizers of CYP 2D6 will metabolize Perphenazine more slowly and will experience higher concentrations compared with normal or “extensive” metabolizers.



Indications and Usage for Perphenazine


Perphenazine is indicated for use in the treatment of schizophrenia and for the control of severe nausea and vomiting in adults.


Perphenazine has not been shown effective for the management of behavioral complications in patients with mental retardation.



Contraindications


Perphenazine products are contraindicated in comatose or greatly obtunded patients and in patients receiving large doses of central nervous system depressants (barbiturates, alcohol, narcotics, analgesics, or antihistamines); in the presence of existing blood dyscrasias, bone marrow depression, or liver damage; and in patients who have shown hypersensitivity to Perphenazine products, their components, or related compounds.


Perphenazine products are also contraindicated in patients with suspected or established subcortical brain damage, with or without hypothalamic damage, since a hyperthermic reaction with temperatures in excess of 104°F may occur in such patients, sometimes not until 14 to 16 hours after drug administration. Total body ice-packing is recommended for such a reaction; antipyretics may also be useful.



Warnings


Increased Mortality in Elderly Patients with Dementia-Related Psychosis

Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Perphenazine is not approved for the treatment of patients with dementia-related psychosis (see BOXED WARNING).


Tardive dyskinesia, a syndrome consisting of potentially irreversible, involuntary, dyskinetic movements, may develop in patients treated with antipsychotic drugs. Older patients are at increased risk for development of tardive dyskinesia. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown.


Both the risk of developing the syndrome and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses.


There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome, and thereby may possibly mask the underlying disease process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.


Given these considerations, especially in the elderly, antipsychotics should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that 1) is known to respond to antipsychotic drugs, and 2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically.


If signs and symptoms of tardive dyskinesia appear in a patient on antipsychotics, drug discontinuation should be considered. However, some patients may require treatment despite the presence of the syndrome. (For further information about the description of tardive dyskinesia and its clinical detection, please refer to Information for Patients and ADVERSE REACTIONS).



Neuroleptic Malignant Syndrome (NMS)


A potentially fatal symptom complex, sometimes referred to as Neuroleptic Malignant Syndrome (NMS), has been reported in association with antipsychotic drugs. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmias).


The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases where the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever and primary central nervous system (CNS) pathology.


The management of NMS should include 1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy, 2) intensive symptomatic treatment and medical monitoring, and 3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for uncomplicated NMS.


If a patient requires antipsychotic drug treatment after recovery from NMS, the reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported.


If hypotension develops, epinephrine should not be administered since its action is blocked and partially reversed by Perphenazine. If a vasopressor is needed, norepinephrine may be used. Severe, acute hypotension has occurred with the use of phenothiazines and is particularly likely to occur in patients with mitral insufficiency or pheochromocytoma. Rebound hypertension may occur in pheochromocytoma patients.


Perphenazine products can lower the convulsive threshold in susceptible individuals; they should be used with caution in alcohol withdrawal and in patients with convulsive disorders. If the patient is being treated with an anticonvulsant agent, increased dosage of that agent may be required when Perphenazine products are used concomitantly.


Perphenazine products should be used with caution in patients with psychic depression.


Perphenazine may impair the mental and/or physical abilities required for the performance of hazardous tasks such as driving a car or operating machinery; therefore, the patient should be warned accordingly.


Perphenazine products are not recommended for pediatric patients under 12 years of age.



Usage in Pregnancy


Safe use of Perphenazine during pregnancy and lactation has not been established; therefore, in administering the drug to pregnant patients, nursing mothers, or women who may become pregnant, the possible benefits must be weighed against the possible hazards to mother and child.



Precautions


The possibility of suicide in depressed patients remains during treatment and until significant remission occurs. This type of patient should not have access to large quantities of this drug.


As with all phenothiazine compounds, Perphenazine should not be used indiscriminately. Caution should be observed in giving it to patients who have previously exhibited severe adverse reactions to other phenothiazines. Some of the untoward actions of Perphenazine tend to appear more frequently when high doses are used. However, as with other phenothiazine compounds, patients receiving Perphenazine products in any dosage should be kept under close supervision.


Antipsychotic drugs elevate prolactin levels; the elevation persists during chronic administration. Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro, a factor of potential importance if the prescription of these drugs is contemplated in a patient with a previously detected breast cancer. Although disturbances such as galactorrhea, amenorrhea, gynecomastia, and impotence have been reported, the clinical significance of elevated serum prolactin levels is unknown for most patients. An increase in mammary neoplasms has been found in rodents after chronic administration of antipsychotic drugs. Neither clinical studies nor epidemiologic studies conducted to date, however, have shown an association between chronic administration of these drugs and mammary tumorigenesis; the available evidence is considered too limited to be conclusive at this time.


The antiemetic effect of Perphenazine may obscure signs of toxicity due to overdosage of other drugs, or render more difficult the diagnosis of disorders such as brain tumors or intestinal obstruction.


A significant, not otherwise explained, rise in body temperature may suggest individual intolerance to Perphenazine, in which case it should be discontinued.


Patients on large doses of a phenothiazine drug who are undergoing surgery should be watched carefully for possible hypotensive phenomena. Moreover, reduced amounts of anesthetics or central nervous system depressants may be necessary.


Since phenothiazines and central nervous system depressants (opiates, analgesics, antihistamines, barbiturates) can potentiate each other, less than the usual dosage of the added drug is recommended and caution is advised when they are administered concomitantly.


Use with caution in patients who are receiving atropine or related drugs because of additive anticholinergic effects and also in patients who will be exposed to extreme heat or phosphorus insecticides.


The use of alcohol should be avoided, since additive effects and hypotension may occur. Patients should be cautioned that their response to alcohol may be increased while they are being treated with Perphenazine products. The risk of suicide and the danger of overdose may be increased in patients who use alcohol excessively due to its potentiation of the drug’s effect.


Blood counts and hepatic and renal functions should be checked periodically. The appearance of signs of blood dyscrasias requires the discontinuance of the drug and institution of appropriate therapy. If abnormalities in hepatic tests occur, phenothiazine treatment should be discontinued. Renal function in patients on long-term therapy should be monitored; if blood urea nitrogen (BUN) becomes abnormal, treatment with the drug should be discontinued.


The use of phenothiazine derivatives in patients with diminished renal function should be undertaken with caution.


Use with caution in patients suffering from respiratory impairment due to acute pulmonary infections, or in chronic respiratory disorders such as severe asthma or emphysema.


In general, phenothiazines, including Perphenazine, do not produce psychic dependence. Gastritis, nausea and vomiting, dizziness, and tremulousness have been reported following abrupt cessation of high-dose therapy. Reports suggest that these symptoms can be reduced by continuing concomitant antiparkinson agents for several weeks after the phenothiazine is withdrawn.


The possibility of liver damage, corneal and lenticular deposits, and irreversible dyskinesias should be kept in mind when patients are on long-term therapy.


Because photosensitivity has been reported, undue exposure to the sun should be avoided during phenothiazine treatment.



Drug Interactions


Metabolism of a number of medications, including antipsychotics, antidepressants, β-blockers, and antiarrhythmics, occurs through the cytochrome P450 2D6 isoenzyme (debrisoquine hydroxylase). Approximately 10% of the Caucasian population has reduced activity of this enzyme, so-called “poor” metabolizers. Among other populations the prevalence is not known. Poor metabolizers demonstrate higher plasma concentrations of antipsychotic drugs at usual doses, which may correlate with emergence of side effects. In one study of 45 elderly patients suffering from dementia treated with Perphenazine, the 5 patients who were prospectively identified as poor P450 2D6 metabolizers had reported significantly greater side effects during the first 10 days of treatment than the 40 extensive metabolizers, following which the groups tended to converge. Prospective phenotyping of elderly patients prior to antipsychotic treatment may identify those at risk for adverse events.


The concomitant administration of other drugs that inhibit the activity of P450 2D6 may acutely increase plasma concentrations of antipsychotics. Among these are tricyclic antidepressants and selective serotonin reuptake inhibitors, e.g., fluoxetine, sertraline and paroxetine. When prescribing these drugs to patients already receiving antipsychotic therapy, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Lower doses than usually prescribed for either the antipsychotic or the other drug may be required.



Information for Patients


This information is intended to aid in the safe and effective use of this medication. It is not a disclosure of all possible adverse or intended effects.


Given the likelihood that a substantial proportion of patients exposed chronically to antipsychotics will develop tardive dyskinesia, it is advised that all patients in whom chronic use is contemplated be given, if possible, full information about this risk. The decision to inform patients and/or their guardians must obviously take into account the clinical circumstances and the competency of the patient to understand the information provided.



Leukopenia, Neutropenia and Agranulocytosis


In clinical trial and post-marketing experience, events of leukopenia/neutropenia have been reported temporally related to antipsychotic agents, including Perphenazine Tablets, USP. Agranulocytosis (including fatal cases) has also been reported. Possible risk factors for leukopenia/neutropenia include pre-existing low white blood cell count (WBC) and history of drug induced leukopenia/neutropenia. Patients with a pre-existing low WBC or a history of drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and should discontinue Perphenazine Tablets, USP at the first sign of a decline in WBC in the absence of other causative factors.


Patients with neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count <1000/mm3) should discontinue Perphenazine Tablets, USP and have their WBC followed until recovery.



Pregnancy


Non-teratogenic Effects: Neonates exposed to antipsychotic drugs, during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder in these neonates. These complications have varied in severity; while in some cases symptoms have been self-limited, in other cases neonates have required intensive care unit support and prolonged hospitalization.


Perphenazine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.



Geriatric Use


Clinical studies of Perphenazine products did not include sufficient numbers of subjects aged 65 and over to determine whether elderly subjects respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic function, concomitant disease or other drug therapy.


Geriatric patients are particularly sensitive to the side effects of antipsychotics, including Perphenazine. These side effects include extrapyramidal symptoms (tardive dyskinesia, antipsychotic-induced parkinsonism, akathisia), anticholinergic effects, sedation and orthostatic hypotension (see WARNINGS). Elderly patients taking psychotropic drugs may be at increased risk for falling and consequent hip fractures. Elderly patients should be started on lower doses and observed closely.



Adverse Reactions


Not all of the following adverse reactions have been reported with this specific drug; however, pharmacological similarities among various phenothiazine derivatives require that each be considered. With the piperazine group (of which Perphenazine is an example), the extrapyramidal symptoms are more common, and others (e.g., sedative effects, jaundice, and blood dyscrasias) are less frequently seen.


CNS Effects

Extrapyramidal Reactions

opisthotonus, trismus, torticollis, retrocollis, aching and numbness of the limbs, motor restlessness, oculogyric crisis, hyperreflexia, dystonia, including protrusion, discoloration, aching and rounding of the tongue, tonic spasm of the masticatory muscles, tight feeling in the throat, slurred speech, dysphagia, akathisia, dyskinesia, parkinsonism, and ataxia. Their incidence and severity usually increase with an increase in dosage, but there is considerable individual variation in the tendency to develop such symptoms. Extrapyramidal symptoms can usually be controlled by the concomitant use of effective antiparkinsonian drugs, such as benztropine mesylate, and/or by reduction in dosage. In some instances, however, these extrapyramidal reactions may persist after discontinuation of treatment with Perphenazine.


Dystonia

Class effect: Symptoms of dystonia, prolonged abnormal contractions of muscle groups, may occur in susceptible individuals during the first few days of treatment. Dystonic symptoms include: spasm of the neck muscles, sometimes progressing to tightness of the throat, swallowing difficulty, difficulty breathing, and/or protrusion of the tongue. While these symptoms can occur at low doses, they occur more frequently and with greater severity with high potency and at higher doses of first generation antipsychotic drugs. An elevated risk of acute dystonia is observed in males and younger age groups.


Persistent Tardive Dyskinesia

As with all antipsychotic agents, tardive dyskinesia may appear in some patients on long-term therapy or may appear after drug therapy has been discontinued. Although the risk appears to be greater in elderly patients on high-dose therapy, especially females, it may occur in either sex and in children. The symptoms are persistent and in some patients appear to be irreversible. The syndrome is characterized by rhythmical, involuntary movements of the tongue, face, mouth or jaw (e.g., protrusion of the tongue, puffing of the cheeks, puckering of mouth, chewing movements). Sometimes these may be accompanied by involuntary movements of the extremities. There is no known effective treatment for tardive dyskinesia; antiparkinsonism agents usually do not alleviate the symptoms of this syndrome. It is suggested that all antipsychotic agents be discontinued if these symptoms appear. Should it be necessary to reinstitute treatment, or increase the dosage of the agent, or switch to a different antipsychotic agent, the syndrome may be masked. It has been reported that fine, vermicular movements of the tongue may be an early sign of the syndrome, and if the medication is stopped at that time the syndrome may not develop.


Other CNS Effects

include cerebral edema; abnormality of cerebrospinal fluid proteins; convulsive seizures, particularly in patients with EEG abnormalities or a history of such disorders; and headaches.


Neuroleptic malignant syndrome has been reported in patients treated with antipsychotic drugs (see WARNINGS).


Drowsiness may occur, particularly during the first or second week, after which it generally disappears. If troublesome, lower the dosage. Hypnotic effects appear to be minimal, especially in patients who are permitted to remain active.


Adverse behavioral effects include paradoxical exacerbation of psychotic symptoms, catatonic-like states, paranoid reactions, lethargy, paradoxical excitement, restlessness, hyperactivity, nocturnal confusion, bizarre dreams, and insomnia.


Hyperreflexia has been reported in the newborn when a phenothiazine was used during pregnancy.


Autonomic Effects

dry mouth or salivation, nausea, vomiting, diarrhea, anorexia, constipation, obstipation, fecal impaction, urinary retention, frequency or incontinence, bladder paralysis, polyuria, nasal congestion, pallor, myosis, mydriasis, blurred vision, glaucoma, perspiration, hypertension, hypotension, and change in pulse rate occasionally may occur. Significant autonomic effects have been infrequent in patients receiving less than 24 mg Perphenazine daily.


Adynamic ileus occasionally occurs with phenothiazine therapy, and if severe can result in complications and death. It is of particular concern in psychiatric patients, who may fail to seek treatment of the condition.


Allergic Effects

urticaria, erythema, eczema, exfoliative dermatitis, pruritus, photosensitivity, asthma, fever, anaphylactoid reactions, laryngeal edema, and angioneurotic edema; contact dermatitis in nursing personnel administering the drug; and in extremely rare instances, individual idiosyncrasy or hypersensitivity to phenothiazines has resulted in cerebral edema, circulatory collapse, and death.


Endocrine Effects

lactation, galactorrhea, moderate breast enlargement in females and gynecomastia in males on large doses, disturbances in the menstrual cycle, amenorrhea, changes in libido, inhibition of ejaculation, syndrome of inappropriate ADH (antidiuretic hormone) secretion, false positive pregnancy tests, hyperglycemia, hypoglycemia, glycosuria.


Cardiovascular Effects

postural hypotension, tachycardia (especially with sudden marked increase in dosage), bradycardia, cardiac arrest, faintness, and dizziness. Occasionally the hypotensive effect may produce a shock-like condition. ECG changes, nonspecific (quinidine-like effect) usually reversible, have been observed in some patients receiving phenothiazine antipsychotics.


Sudden death has occasionally been reported in patients who have received phenothiazines. In some cases the death was apparently due to cardiac arrest; in others, the cause appeared to be asphyxia due to failure of the cough reflex. In some patients, the cause could not be determined nor could it be established that the death was due to the phenothiazine.


Hematological Effects

agranulocytosis, eosinophilia, leukopenia, hemolytic anemia, thrombocytopenic purpura, and pancytopenia. Most cases of agranulocytosis have occurred between the fourth and tenth weeks of therapy. Patients should be watched closely, especially during that period, for the sudden appearance of sore throat or signs of infection. If white blood cell and differential cell counts show significant cellular depression, discontinue the drug and start appropriate therapy. However, a slightly lowered white count is not in itself an indication to discontinue the drug.


Other Effects

Special considerations in long-term therapy include pigmentation of the skin, occurring chiefly in the exposed areas; ocular changes consisting of deposition of fine particulate matter in the cornea and lens, progressing in more severe cases to star-shaped lenticular opacities; epithelial keratopathies; and pigmentary retinopathy. Also noted: peripheral edema, reversed epinephrine effect, increase in PBI not attributable to an increase in thyroxine, parotid swelling (rare), hyperpyrexia, systemic lupus erythematosus-like syndrome, increases in appetite and weight, polyphagia, photophobia, and muscle weakness.


Liver damage (biliary stasis) may occur. Jaundice may occur, usually between the second and fourth weeks of treatment, and is regarded as a hypersensitivity reaction. Incidence is low. The clinical picture resembles infectious hepatitis but with laboratory features of obstructive jaundice. It is usually reversible; however, chronic jaundice has been reported.



Overdosage


In the event of overdosage, emergency treatment should be started immediately. Consultation with a poison center should be considered. All patients suspected of having taken an overdose should be hospitalized as soon as possible.



Manifestations


The toxic effects of Perphenazine are typically mild to moderate with death occurring in cases involving a large overdose. Overdosage of Perphenazine primarily involves the extrapyramidal mechanism and produces the same side effects described under ADVERSE REACTIONS, but to a more marked degree. It is usually evidenced by stupor or coma; children may have convulsive seizures. Signs of arousal may not occur for 48 hours. The primary effects of medical concern are cardiac in origin including tachycardia, prolongation of the QRS or QTc intervals, atrioventricular block, torsade de pointes, ventricular dysrhythmia, hypotension or cardiac arrest, which indicate serious poisoning. Deaths by deliberate or accidental overdosage have occurred with this class of drugs.



Treatment


Treatment is symptomatic and supportive. Induction of emesis is not recommended because of the possibility of a seizure, CNS depression, or dystonic reaction of the head or neck and subsequent aspiration. Gastric lavage (after intubation, if the patient is unconscious) and administration of activated charcoal together with a laxative should be considered. There is no specific antidote.


Standard measures (oxygen, intravenous fluids, corticosteroids) should be used to manage circulatory shock or metabolic acidosis. An open airway and adequate fluid intake should be maintained. Body temperature should be regulated. Hypothermia is expected, but severe hyperthermia may occur and must be treated vigorously (see CONTRAINDICATIONS).


An electrocardiogram should be taken and close monitoring of cardiac function instituted if there is any sign of abnormality. Close monitoring of cardiac function is advisable for not less than five days. Vasopressors such as norepinephrine may be used to treat hypotension, but epinephrine should NOT be used.


Hemodialysis and peritoneal dialysis are of no value because of low plasma concentrations of the drug.


Since overdosage is often deliberate, patients may attempt suicide by other means during the recovery phase.



Perphenazine Dosage and Administration


Dosage must be individualized and adjusted according to the severity of the condition and the response obtained. As with all potent drugs, the best dose is the lowest dose that will produce the desired clinical effect. Since extrapyramidal symptoms increase in frequency and severity with increased dosage, it is important to employ the lowest effective dose. These symptoms have disappeared upon reduction of dosage, withdrawal of the drug, or administration of an antiparkinsonian agent.


Prolonged administration of doses exceeding 24 mg daily should be reserved for hospitalized patients or patients under continued observation for early detection and management of adverse reactions. An antiparkinsonian agent, such as trihexyphenidyl hydrochloride or benztropine mesylate, is valuable in controlling drug-induced extrapyramidal symptoms.


Suggested dosages for various conditions follow:



Moderately disturbed nonhospitalized patients with schizophrenia


4 to 8 mg t.i.d. initially; reduce as soon as possible to minimum effective dosage.



Hospitalized patients with schizophrenia


8 to 16 mg b.i.d. to q.i.d.; avoid dosages in excess of 64 mg daily.



Severe nausea and vomiting in adults


8 to 16 mg daily in divided doses; 24 mg occasionally may be necessary, early dosage reduction is desirable.



Elderly Patients


With increasing age, plasma concentrations of Perphenazine per daily ingested dose increase. Geriatric dosages of Perphenazine preparations have not been established, but initiation of lower dosages is recommended. Optimal clinical effect or benefit may require lower doses for a longer duration. Dosing of Perphenazine may occur before bedtime, if required.



How is Perphenazine Supplied


Perphenazine tablets, USP are available as:


2 mg: gray, round, bi-convex, film-coated tablets debossed “4940” on one side and debossed “V” on the reverse side. Available as follows:


  • Bottles of 100: 0603-5060-21

  • Bottles of 500: 0603-5060-28

  • Bottles of 1000: 0603-5060-32

4 mg: gray, round, bi-convex, film-coated tablets debossed “4941” on one side and debossed “V” on the reverse side. Available as follows:


  • Bottles of 100: 0603-5061-21

  • Bottles of 500: 0603-5061-28

  • Bottles of 1000: 0603-5061-32

8 mg: gray, round, bi-convex, film-coated tablets debossed “4942” on one side and debossed “V” on the reverse side. Available as follows:


  • Bottles of 100: 0603-5062-21

  • Bottles of 500: 0603-5062-28

  • Bottles of 1000: 0603-5062-32

16 mg: gray, round, bi-convex, film-coated tablets debossed “4943” on one side and debossed “V” on the reverse side. Available as follows:


  • Bottles of 100: 0603-5063-21

  • Bottles of 500: 0603-5063-28

  • Bottles of 1000: 0603-5063-32


Store at 20° – 25°C (68° – 77°F) [see USP Controlled Room Temperature].


Dispense in a tight, light-resistant container.



Manufactured for:

QUALITEST PHARMACEUTICALS

Huntsville, AL 35811


8183520

R1/12-R0



PRINCIPAL DISPLAY PANEL



 

PRINCIPAL DISPLAY PANEL



 

PRINCIPAL DISPLAY PANEL



 

PRINCIPAL DISPLAY PANEL



 






Perphenazine 
Perphenazine  tablet, film coated










Product Information
Product TypeHUMAN PRESCRIPTION DRUGNDC Product Code (Source)0603-5060
Route of AdministrationORALDEA Schedule    








Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
Perphenazine (Perphenazine)Perphenazine2 mg
























Inactive Ingredients
Ingredient NameStrength
FERROSOFERRIC OXIDE 
LACTOSE MONOHYDRATE 
MAGNESIUM STEARATE 
CELLULOSE, MICROCRYSTALLINE 
POLYETHYLENE GLYCOLS 
POLYVINYL ALCOHOL 
SODIUM STARCH GLYCOLATE TYPE A POTATO 
TALC 
TITANIUM DIOXIDE 
FERRIC OXIDE YELLOW 


















Product Characteristics
ColorGRAYScoreno score
ShapeROUNDSize7mm
FlavorImprint Code4940;V
Contains      


















Packaging
#NDCPackage DescriptionMultilevel Packaging
10603-5060-21100 TABLET In 1 BOTTLE, PLASTICNone
20603-5060-28500 TABLET In 1 BOTTLE, PLASTICNone
30603-5060-321000 TABLET In 1 BOTTLE, PLASTICNone










Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA04022612/31/1998







Perphenazine 
Perphenazine  tablet, film coated










Product Information
Product TypeHUMAN PRESCRIPTION DRUGNDC Product Code (Source)0603-5061
Route of AdministrationORALDEA Schedule    








Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
Perphenazine (Perphenazine)Perphenazine4 mg
























Inactive Ingredients
Ingredient NameStrength
FERROSOFERRIC OXIDE 
LACTOSE MONOHYDRATE 
MAGNESIUM STEARATE 
CELLULOSE, MICROCRYSTALLINE 
POLYETHYLENE GLYCOLS 
POLYVINYL ALCOHOL 
SODIUM STARCH GLYCOLATE TYPE A POTATO 
TALC 
TITANIUM DIOXIDE 
FERRIC OXIDE YELLOW 


















Product Characteristics
ColorGRAYScoreno score
ShapeROUNDSize7mm
FlavorImprint Code4941;V
Contains      


















Packaging
#NDCPackage DescriptionMultilevel Packaging
10603-5061-21100 TABLET In 1 BOTTLE, PLASTICNone
20603-5061-28500 TABLET In 1 BOTTLE, PLASTICNone
30603-5061-321000 TABLET In 1 BOTTLE, PLASTICNone










Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA04022612/31/1998




Perphenazine 
Perphenazine  tablet, film coated










Product Information
Product TypeHUMAN PRESCRIPTION DRUGNDC Product Code (Source)0603-5062
Route of AdministrationORALDEA Schedule    








Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
Perphenazine (Perphenazine)Perphenazine8 mg




















Inactive Ingredients
Ingredient NameStrength
FERROSOFERRIC OXIDE 
LACTOSE MONOHYDRATE 
MAGNESIUM STEARATE 
CELLULOSE, MICROCRYSTALLINE 
POLYETHYLENE GLYCOLS 
SODIUM STARCH GLYCOLATE TYPE A POTATO 
TALC 
TITANIUM DIOXIDE 
FERRIC OX